博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
CPUID
阅读量:4963 次
发布时间:2019-06-12

本文共 23041 字,大约阅读时间需要 76 分钟。

CPUID

From Wikipedia, the free encyclopedia
  

The CPUID  is a  (its name derived from  IDentification) for the  architecture. It was introduced by  in 1993 when it introduced the and  processors.

By using the CPUID opcode, software can determine processor type and the presence of features (like /). The CPUID opcode is 0Fh, 0A2h (as two bytes, or 0A20Fh as a single word) and the value in the EAX register, and in some cases the ECX register, specifies what information to return.

Prior to the general availability of the CPUID instruction, programmers would write esoteric  which exploited minor differences in CPU behavior in order to determine the processor make and model. Outside the x86 family, developers are sometimes still required to use esoteric processes to determine the variations in CPU design that are present. While the CPUID instruction is specific to the x86 architecture, other architectures often provide on-chip registers which can be read to obtain the same sorts of information provided by this instruction.

 

Contents

 
 [] 

 

Calling CPUID[]

In  the CPUID instruction takes no parameters as CPUID implicitly uses the EAX register. The EAX register should be loaded with a value specifying what information to return. CPUID should be called with EAX = 0 first, as this will return the highest calling parameter that the CPU supports. To obtain extended function information CPUID should be called with the second most significant bit of EAX set. To determine the highest extended function calling parameter, call CPUID with EAX = 80000000h.

EAX=0: Get vendor ID[]

This returns the CPU's manufacturer ID string - a twelve character  string stored in EBX, EDX, ECX - in that order. The highest basic calling parameter (largest value that EAX can be set to before calling CPUID) is returned in EAX.

The following are known processor manufacturer ID strings:

  • "AMDisbetter!" — early engineering samples of  processor
  • "AuthenticAMD" — 
  • "CentaurHauls" — 
  • "CyrixInstead" — 
  • "GenuineIntel" — 
  • "TransmetaCPU" — 
  • "GenuineTMx86" — 
  • "Geode by NSC" — 
  • "NexGenDriven" — 
  • "RiseRiseRise" — 
  • "SiS SiS SiS " — 
  • "UMC UMC UMC " — 
  • "VIA VIA VIA " — 
  • "Vortex86 SoC" — 
  • "KVMKVMKVMKVM" — 

For instance, on a GenuineIntel processor values returned in EBX is 0x756e6547, EDX is 0x49656e69 and ECX is 0x6c65746e. The following code is written in  for the  architecture and displays the vendor ID string as well as the highest calling parameter that the CPU supports.

.data s0:        .asciz  "Largest basic function number supported: %i\n"s1:        .asciz  "Vendor ID: %.12s\n"         .text         .align  32        .globl  _start_start:        pushq   %rbp        pushq   %rbx        movq    %rsp,%rbp        subq    $16,%rsp         xorl    %eax,%eax        cpuid         movl    %ebx,0(%rsp)        movl    %edx,4(%rsp)        movl    %ecx,8(%rsp)         movq    $s0,%rdi        movl    %eax,%esi        xorb    %al,%al        call    printf         movq    $s1,%rdi        movq    %rsp,%rsi        xorb    %al,%al        call    printf         movq    %rbp,%rsp        popq    %rbx        popq    %rbp        movl    $1,%eax        int     $0x80

EAX=1: Processor Info and Feature Bits[]

This returns the CPU's , model, and family information in EAX (also called the signature of a CPU), feature flags in EDX and ECX, and additional feature info in EBX.

The format of the information in EAX is as follows:

  • 3:0 - Stepping
  • 7:4 - Model
  • 11:8 - Family
  • 13:12 - Processor Type
  • 19:16 - Extended Model
  • 27:20 - Extended Family

 has suggested applications to display the family of a CPU as the sum of the "Family" and the "Extended Family" fields shown above, and the model as the sum of the "Model" and the 4-bit left-shifted "Extended Model" fields.

 recommends the same only if "Family" is equal to 15 (i.e. all bits set to 1). If "Family" is lower than 15, only the "Family" and "Model" fields should be used while the "Extended Family" and "Extended Model" bits are reserved. If "Family" is set to 15, then "Extended Family" and the 4-bit left-shifted "Extended Model" should be added to the respective base values.

The processor info and feature flags are manufacturer specific but usually the Intel values are used by other manufacturers for the sake of compatibility.

The standard Intel feature flags are as follows

EAX=1 CPUID feature bits
Bit EDX ECX
Short Feature Short Feature
0 fpu Onboard  FPU pni  (SSE3)
1 vme Virtual mode extensions (VIF) pclmulqdq  support
2 de Debugging extensions ( bit 3) dtes64 64-bit debug store (edx bit 21)
3 pse monitor MONITOR and MWAIT instructions ()
4 tsc ds_cpl CPL qualified debug store
5 msr vmx
6 pae smx Safer Mode Extensions ()
7 mce est Enhanced 
8 cx8 CMPXCHG8 () instruction tm2
9 apic Onboard  ssse3  instructions
10 (reserved) cid Context ID
11 sep SYSENTER and SYSEXIT instructions (reserved)
12 mtrr fma  (FMA3)
13 pge Page Global Enable bit in  cx16 CMPXCHG16B instruction
14 mca xtpr Can disable sending task priority messages
15 cmov Conditional move and  instructions pdcm Perfmon & debug capability
16 pat (reserved)
17 pse36 pcid Process context identifiers ( bit 17)
18 pn dca Direct cache access for DMA writes
19 clflush CLFLUSH instruction () sse4_1  instructions
20 (reserved) sse4_2  instructions
21 dts Debug store: save trace of executed jumps x2apic  support
22 acpi Onboard thermal control MSRs for  movbe MOVBE instruction (,  only)
23 mmx  instructions popcnt  instruction
24 fxsr FXSAVE, FXRESTOR instructions,  bit 9 tscdeadline APIC supports one-shot operation using a TSC deadline value
25 sse  instructions (a.k.a. Katmai New Instructions) aes
26 sse2  instructions xsave XSAVE, XRESTOR, XSETBV, XGETBV
27 ss CPU cache supports self- osxsave XSAVE enabled by OS
28 ht avx
29 tm Thermal monitor automatically limits temperature f16c  () FP support
30 ia64  processor emulating x86 rdrnd  (on-chip random number generator) support
31 pbe Pending Break Enable (PBE# pin) wakeup support hypervisor Running on a  (always 0 on a real CPU, but also with some hypervisors)

EAX=2: Cache and TLB Descriptor information[]

This returns a list of descriptors indicating cache and  capabilities in EAX, EBX, ECX and EDX registers.

EAX=3: Processor Serial Number[]

This returns the processor's serial number. The processor serial number was introduced on Intel , but due to privacy concerns, this feature is no longer implemented on later models (PSN feature bit is always cleared).  Efficeon and Crusoe processors also provide this feature. AMD CPUs however, do not implement this feature in any CPU models.

For Intel Pentium III CPUs, the serial number is returned in EDX:ECX registers. For Transmeta Efficeon CPUs, it is returned in EBX:EAX registers. And for Transmeta Crusoe CPUs, it is returned in EBX register only.

Note that the processor serial number feature must be enabled in the  setting in order to function.

EAX=80000000h: Get Highest Extended Function Supported[]

The highest calling parameter is returned in EAX.

EAX=80000001h: Extended Processor Info and Feature Bits[]

This returns extended feature flags in EDX and ECX.

AMD feature flags are as follows

EAX=80000001h CPUID feature bits
Bit EDX ECX
Short Feature Short Feature
0 fpu Onboard  FPU lahf_lm LAHF/SAHF in long mode
1 vme Virtual mode extensions (VIF) cmp_legacy  not valid
2 de Debugging extensions ( bit 3) svm
3 pse extapic Extended  space
4 tsc cr8_legacy  in 32-bit mode
5 msr abm Advanced bit manipulation ( and )
6 pae sse4a
7 mce misalignsse Misaligned  mode
8 cx8 CMPXCHG8 () instruction 3dnowprefetch PREFETCH and PREFETCHW instructions
9 apic Onboard  osvw OS Visible Workaround
10 (reserved) ibs
11 syscall SYSCALL and SYSRET instructions xop
12 mtrr skinit SKINIT/STGI instructions
13 pge Page Global Enable bit in  wdt
14 mca (reserved)
15 cmov Conditional move and  instructions lwp Light Weight Profiling
16 pat fma4
17 pse36 tce Translation Cache Extension
18 (reserved)
19 mp  Capable nodeid_msr NodeID MSR
20 nx (reserved)
21 (reserved) tbm Trailing Bit Manipulation
22 mmxext topoext Topology Extensions
23 mmx  instructions perfctr_core Core performance counter extensions
24 fxsr FXSAVE, FXRSTOR instructions,  bit 9 perfctr_nb NB performance counter extensions
25 fxsr_opt FXSAVE/FXRSTOR optimizations (reserved)
26 pdpe1gb  pages (reserved)
27 rdtscp RDTSCP instruction (reserved)
28 (reserved)
29 lm (reserved)
30 3dnowext (reserved)
31 3dnow (reserved)

EAX=80000002h,80000003h,80000004h: Processor Brand String[]

These return the processor brand string in EAX, EBX, ECX and EDX. CPUID must be issued with each parameter in sequence to get the entire 48-byte null-terminated ASCII processor brand string. It is necessary to check whether the feature is supported by the CPU by issuing CPUID with EAX = 80000000h first and checking if the returned value is greater or equal to 80000004h.

.section .data s0 : .asciz "Processor Brand String: %.48s\n"err : .asciz "Feature unsupported.\n" .section .text .global main.type main,@function.align 32main:        pushq   %rbp        movq    %rsp,   %rbp        subq    $48,    %rsp        pushq   %rbx         movl    $0x80000000,    %eax        cpuid         cmpl    $0x80000004,    %eax        jl      error         movl    $0x80000002,    %esi        movq    %rsp,   %rdi .align 16get_brand:        movl    %esi,   %eax        cpuid         movl    %eax,   (%rdi)        movl    %ebx,   4(%rdi)        movl    %ecx,   8(%rdi)        movl    %edx,   12(%rdi)         addl    $1,     %esi        addq    $16,    %rdi        cmpl    $0x80000004,    %esi        jle     get_brand print_brand:        movq    $s0,    %rdi        movq    %rsp,   %rsi        xorb    %al,    %al        call    printf         jmp     end .align 16error:        movq    $err,   %rdi        xorb    %al,    %al        call    printf .align 16end:        popq    %rbx        movq    %rbp,   %rsp        popq    %rbp        xorl    %eax,   %eax        ret

EAX=80000005h: L1 Cache and TLB Identifiers[]

This function contains the processor’s L1 cache and TLB characteristics.

EAX=80000006h: Extended L2 Cache Features[]

Returns details of the L2 cache in ECX, including the line size in bytes, type of associativity (encoded by a 4 bits) and the cache size.

.section .data info : .ascii "L2 Cache Size : %u KB\nLine size : %u bytes\n".asciz "Associativity : %02xh\n"err : .asciz "Feature unsupported.\n" .section .text .global main.type main,@function.align 32main:        pushq   %rbp        movq    %rsp,   %rbp        pushq   %rbx         movl    $0x80000000,    %eax        cpuid         cmpl    $0x80000006,    %eax        jl      error         movl    $0x80000006,    %eax        cpuid         movl    %ecx,   %eax         movl    %eax,   %edx        andl    $0xff,  %edx         movl    %eax,   %ecx        shrl    $12,    %ecx        andl    $0xf,   %ecx         movl    %eax,   %esi        shrl    $16,    %esi        andl    $0xffff,%esi         movq    $info,  %rdi        xorb    %al,    %al        call    printf         jmp end .align 16error:        movq    $err,   %rdi        xorb    %al,    %al        call    printf .align 16end:        popq    %rbx        movq    %rbp,   %rsp        popq    %rbp        xorl    %eax,   %eax        ret

EAX=80000007h: Advanced Power Management Information[]

This function provides advanced power management feature identifiers.

EAX=80000008h: Virtual and Physical address Sizes[]

Returns largest virtual and physical address sizes in EAX.

Accessing the id from other languages[]

This information is easy to access from other languages as well. For instance, the C++ code for gcc below prints the first five values, returned by the cpuid:

#include 
int main(){
int a, b; for (a = 0; a < 5; a++) {
__asm__("cpuid;" :"=a"(b) // EAX into b (output) :"0"(a) // a into EAX (input) :"%ebx","%ecx","%edx"); // clobbered registers std::cout << "The code " << a << " gives " << b << std::endl; } return 0;}

In C, the code may be shortened to:

int main(){
int a, b; for (a = 0; a < 5; a++) {
__asm__("cpuid" :"=a"(b) // EAX into b (output) :"0"(a) // a into EAX (input) :"%ebx","%ecx","%edx"); // clobbered registers printf("The code %i gives %i\n", a, b); } return 0;}

Or, a generally useful C implementation that works on 32 and 64 bit setups:

#include 
int main() {
int i; unsigned int index = 0; unsigned int regs[4]; int sum; __asm__ __volatile__(#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) "pushq %%rbx \n\t" /* save %rbx */#else "pushl %%ebx \n\t" /* save %ebx */#endif "cpuid \n\t" "movl %%ebx ,%[ebx] \n\t" /* write the result into output var */#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) "popq %%rbx \n\t"#else "popl %%ebx \n\t"#endif : "=a"(regs[0]), [ebx] "=r"(regs[1]), "=c"(regs[2]), "=d"(regs[3]) : "a"(index)); for (i=4; i<8; i++) {
printf("%c" ,((char *)regs)[i]); } for (i=12; i<16; i++) {
printf("%c" ,((char *)regs)[i]); } for (i=8; i<12; i++) {
printf("%c" ,((char *)regs)[i]); } printf("\n");}

Another version of that:

#include 
void cpuid(unsigned info, unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx){
__asm__( "xchg %%ebx, %%edi;" /* 32bit PIC: don't clobber ebx */ "cpuid;" "xchg %%ebx, %%edi;" :"=a" (*eax), "=D" (*ebx), "=c" (*ecx), "=d" (*edx) :"0" (info) );} int main(){
unsigned int eax, ebx, ecx, edx; int i; for (i = 0; i < 6; ++i) {
cpuid(i, &eax, &ebx, &ecx, &edx); printf("eax=%i: %#010x %#010x %#010x %#010x\n", i, eax, ebx, ecx, edx); } return 0;}

Microsoft Visual C compiler has builtin function __cpuid() so cpuid instruction may be embedded without using inline assembly. This is handy since x64 version of MSVC doesn't allow inline assembly at all. The same program for  would be:

#include 
#include
int main(){
int b[4]; for (int a = 0; a < 5; a++) {
__cpuid(b, a); std::cout << "The code " << a << " gives " << b[0] << std::endl; } return 0;}

For Borland/Embarcadero C compilers (bcc32), native asm function calls are necessary, as there is no asm() implementation. The pseudo code:

unsigned int a, b, c, d;  unsigned int InfoType = 0;  __asm xor EBX, EBX;  __asm xor ECX, ECX;  __asm xor EDX, EDX;  __asm mov EAX, InfoType;  __asm cpuid;  __asm mov a, EAX;  __asm mov b, EBX;  __asm mov c, ECX;  __asm mov d, EDX;

Many interpreted or compiled scripting languages are capable of using CPUID via an  library.  shows usage of the Ruby FFI module to execute assembly language that includes the CPUID opcode.

Uptake of CPUID instructions outside x86[]

The Intel-AMD x86 family has so far been the only CPU family to have a CPUID instruction. ,  and  like chip families have not taken up the instruction in any noticeable way, in spite of having (in relative terms) as many variations in design.  have a CPUID coprocessor register for the same purpose. IBM mainframe processor z10 and predecessors have had the Store CPUID (STIDP) instruction for querying the processor ID.

See also[]

  • , a Windows utility that uses CPUID to identify various system settings

References[]

  1.  . Intel.com. Retrieved 2013-04-11.
  2.  . Rcollins.org. Retrieved 2013-04-11.
  3.  . Lxr.linux.no. Retrieved 2013-04-11.
  4. ^   . Download.intel.com. 2012-03-06. Retrieved 2013-04-11.
  5.  , , January 2011, retrieved 2011-05-29
  6.  Linux kernel source code
  7.  Huggahalli, Ram; Iyer, Ravi; Tetrick, Scott (2005). "Direct Cache Access for High Bandwidth Network I/O".  33 (2): 50–59.:.:. 
  8.  Drepper, Ulrich (2007), What Every Programmer Should Know About Memory, :
  9.  , , September 2010, retrieved 2013-04-02
  10.  Linux kernel source code 
  11.  , , August 2010, retrieved 2013-04-03
  12.  . Infocenter.arm.com. Retrieved 2013-04-11.
  13.  .

External links[]

  •  CPUID guide (PDF)
  •  CPUID guide (PDF)
  •  CPUID utility for multi-processor platform

 

 

Intel Architecture and Processor Identification With CPUID Model and Family Numbers

This article is intended to aid software developers in understanding the "big picture" of Intel's recent architecture and processor releases. The  adds predictability to the . However within each "tick" and "tock" architecture, multiple processors are launched to support the many diverse computing needs of consumers. While the general  and feature set within a given architecture are identical, certain model specific variations occur, and are generally enumerated through CPUID interrogation. The CPUID model number is a convenient way of anticipating the model specific functionality that is available at runtime and subsequently designing the architecture specific parts of software (nevertheless, at runtime, the feature bits in the CPUID should always be verified before use).

The information in the table below is composed from the  and the .

For identifying a particular processor, please use the  for Microsoft Windows* operating systems or the  for other operating systems.

Notes

  • The -EP suffix denotes a Dual Processor, meaning this processor is designed to operate in a Dual Processor platform (but can still operate in a Single Processor platform). The -EX suffix denotes a Multi-Processor (MP), meaning this processor is designed to operate in a Multiprocessor platform, but can still operate in a Single or Dual processor platform configuration.
  • The Family number is an 8-bit number derived from the processor signature by adding the Extended Family number (bits 27:20) and the Family number (bits 11:8). See section 5.1.2.2 of the .
  • The Model number is an 8 bit number derived from the processor signature by shifting the Extended Model number (bits 19:16) 4 bits to the left and adding the Model number (bits 7:4) . See section 5.1.2.2 of the .

This table includes the mainline processors on 90nm and later process technology. Please read and understand these important prior to use.

Process

Technology

Microarchitecture

Codename

Processor

Codename

Processor

Signature

Family

Number

Model

Number

Intel® Brand

Name(s)

Intel® Brand

Processor Number

22 nm

IvyBridge

IvyBridge

0x306Ax

0x06

0x3A

Core™ i3

Core™ i5
Core™ i7
Core™ i7 Extreme
Xeon™ E3

i3-31xx/32xx-T/U

i5-3xxx-T/S/M/K/ME
i7-3xxx-S/K/M/QM/LE/UE/QE
i7-3920XM
E3-12xxV2

32 nm

SandyBridge

SandyBridge

0x206Ax

0x2A

Core™ i3

Core™ i5
Core™ i7
Core™ i7 Extreme
Celeron™ Desktop
Celeron™ Mobile
Pentium™ Desktop
Pentium™ Mobile
Xeon™ E3

i3-21xx/23xx-T/M/E/UE

i5-23xx/24xx/25xx-T/S/M/K
i7-2xxx-S/K/M/QM/LE/UE/QE
i7-29xxXM 
G4xx, G5xx
8xx, B8xx
350, G6xx, G6xxT, G8xx
9xx, B9xx
E3-12xx

SandyBridge-E

0x206Dx

0x2D

Core™ i7

Core™ i7 Extreme

I7-3820/3930K

i7-3960X

SandyBridge-EN

Xeon™ E5

E5-24xx

SandyBridge-EP

Xeon™ E5

E5-16xx, 26xx/L/W

Westmere

Arrandale

0x2065x

0x25

Celeron™ Mobile

Pentium™ Mobile
Core™ i3
Core™ i5
Core™ i7

P4xxx, U3xxx

P6xxx, U5xxx
i3-3xxE, i3-3xxM, i3-3xxUM
i5-4xxM/UM, i5-5xxE/M/UM
i7-6xxE/LE/UE/M/LM/UM

Clarksdale

Pentium™ Desktop

Core™ i3
Core™ i5
Xeon™ 3000

G69xx

i3-5xx
i5-6xx, i5-6xxK
L34xx

Gulftown

0x206Cx

0x2C

Core™ i7

Core™ i7 Extreme
Xeon™ 3000

i7-9xx

i7-9xxX
W36xx

Westmere-EP

Xeon™ 3000

Xeon™ 5000

W36xx

L56xx, E56xx, X56xx

Westmere-EX

0x206Fx

0x2F

Xeon™ E7

E7-2xxx, E7-48xx, E7-88xx

45 nm

Nehalem

Clarksfield

0x106Ex

0x1E

Core™ i7

Core™ i7 Extreme

i7-7xxQM, i7-8xxQM

i7-9xxXM

Lynnfield

Core™ i5

Core™ i7
Xeon™ 3000

i5-7xx, i5-7xxS

i7-8xx, i7-8xxS, i7-8xxK
X34xx

Jasper Forest

Xeon™ 5000

Celeron™ Desktop

LC55xx, EC55xx

P10xx

Bloomfield

0x106Ax

0x1A

Core™ i7 Extreme

Core™ i7
Xeon™ 3000

i7-965/975

i7-9x0
W35xx

Nehalem-EP

Xeon™ 5000

L55xx, E55xx, X55xx, W55xx

Nehalem-EX

0x206Ex

0x2E

Xeon™ 7000

Xeon™ 6000

L75xx, E75xx, X75xx

E65xx, X65xx

Penryn

Yorkfield

0x1067x

0x17

Core™ 2 Quad

Core™ 2 Extreme
Xeon™ 3000

Q9xxx, Q8xxx, !9xxxS

QX9xxx
L33xx, X3350

Wolfdale

Celeron™ Desktop

Core™ 2 Duo 
Pentium™
Xeon™ 5000/3000

E3xxx

E7xxx, E8xxx
E5xxx, E6xxx, E6xxxK
L52xx, E31xx

Penryn

Core™ 2 Duo Mobile

Celeron™ M

P7xxx, P9xxx, SL9xxx

722

Harpertown (DP)

Xeon™ 5000

L54xx, E54xx, X54xx

Dunnington (MP)

0x106Dx

0x1D

Xeon™ 7000

L74xx, E74xx, Q7xx

65 nm

Merom

Clovertown

0x006Fx

0x0F

Xeon™ 5000

E53xx, L53xx, X53xx

Kentsfield

Xeon™ 3000

Core™ 2 Quad
Core™ 2 Extreme

X32xx

Q6600
QX6xxx

Conroe

Xeon™ 3000

Pentium™
Core™ 2 Duo
Core™ 2 Extreme
Celeron™ Desktop

30xx

E21xx
E43xx,E6xxx
X6800
E1600

Merom

Core™ 2 Duo M

Pentium™ Mobile
Core™ 2 Extreme M

L7xxx,T5xxx,T7xxx,U7xxx

T3200
X7xxx

Woodcrest

Xeon™ 5000

51xx

Merom

Conroe

0x1066x

0x16

Celeron™ Desktop

Celeron™ Mobile

4xx

5xx

Presler

Cedar Mill

0x0066x

0x0F

0x06

Pentium™ 4

3xx, 6xx

Presler

Pentium™ D

9xx

90 nm

Prescott

Nocona

Irwindale

0x0063x

0x0064x

0x03/

0x04

Xeon™

 

Prescott

Celeron™ D

Pentium™ 4

3xx

5xx

Dothan

Dothan

0x006Dx

0x06

0x0D

Celeron™ M

Pentium™ Mobile

3xx

7xx

 

This table includes the Atom™ processors on 45nm and later process technology. Please read and understand these important prior to use.

Process

Technology

Microarchitecture

Codename

Processor

Codename

Platform

Codename

Processor

Signature

Family

Number

Model

Number

Intel® Brand

Name(s)

Intel® Brand

Processor Number

32 nm

Atom™

Cedarview

Cedar Trail

0x0366x

0x06

0x36

Atom™

N2000 series: N26xx, N28xx

D2000 Series: D25xx (no HT), D27xx

45 nm

Lincroft

Oak Trail

0x0266x

0x26

Z6xx (single core)

Pineview

Pine Trail

0x016Cx

0x1C

N4xx, D4xx (single core)

N5xx, D5xx (dual core)

Silverthorne

any

Z5xx

Information in this article is intended as a convenient summary of the contents of the  application note and the .

In case of discrepancy, the information in the  and  supersede the contents of this article. (Please notify the author of any such discrepancy).

Please consult Section 2: Usage Guidelines of the  for the proper use of CPUID.

Intel® processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See  for details.

All information provided is subject to change at any time, without notice. Intel may make changes to manufacturing life cycle, specifications, and product descriptions at any time, without notice. The information herein is provided "as-is" and Intel does not make any representations or warranties whatsoever regarding accuracy of the information, nor on the product features, availability, functionality, or compatibility of the products listed. Please contact system vendor for more information on specific products or systems.


 For an example of interrogating CPUID to verify features please read 

 In Linux*-based operating systems you can type ‘cat /proc/cpuinfo' to obtain the processor family and model numbers (note they are formatted in decimal, while the tables in this article containhexadecimal formatting of these numbers).

Categories: 
  •  
  •   
  •   
  •   
  •   
  •  
Tags: 
  •  
  •   
  •   
  •   
  •   
  •   
  •   
  •   
  •   
  •   
  •  

转载于:https://www.cnblogs.com/baiyw/p/3419528.html

你可能感兴趣的文章
错误org/aopalliance/intercept/MethodInterceptor解决方法
查看>>
Pylint在项目中的使用
查看>>
使用nginx做反向代理和负载均衡效果图
查看>>
access remote libvirtd
查看>>
(4) Orchard 开发之 Page 的信息存在哪?
查看>>
ASP.NET中 GridView(网格视图)的使用前台绑定
查看>>
深入了解Oracle ASM(二):ASM File number 1 文件目录
查看>>
Boosting(提升方法)之AdaBoost
查看>>
Binding object to winForm controller through VS2010 Designer(通过VS2010设计器将对象绑定到winForm控件上)...
查看>>
Spring Boot实战笔记(二)-- Spring常用配置(Scope、Spring EL和资源调用)
查看>>
SwaggerUI+SpringMVC——构建RestFul API的可视化界面
查看>>
springmvc怎么在启动时自己执行一个线程
查看>>
C# 通知机制 IObserver<T> 和 IObservable<T>
查看>>
Code of Conduct by jsFoundation
查看>>
C#小练习ⅲ
查看>>
电源防反接保护电路
查看>>
arraylist
查看>>
zoj 1649 Rescue (BFS)(转载)
查看>>
2124: 等差子序列 - BZOJ
查看>>
字符串匹配算法综述
查看>>